
Milcom 04 paper ID# 1 1 5 8
A New Class of Turbo-like Codes with

Efficient and Practical High-Speed Decoders

Aliazam ~bbasfar', Dariush ~ivsala?, and Kung ~ a o '
1 Dept. of Elec. Eng., UCLA, Los Angeles, USA

2 Jet Propulsion Laboratory, Pasadena, USA
(Point of contact Dariush Divsalar)

(Unclassified)
abbasfar(u>ee.ucla.edu Dariusl~.Divsalark~i~l.nasa.Lrov, vaoidee.ucla.edu

Abstract- Turbo codes not only achieve near Shannon-
capacity performance, but also have decoders with modest
complexity, which is crucial for implementation. So far efficient
architectures for decoding of turbo codes have been proposed
that is suitable for serial processing. In this paper a novel
architecture for very high-speed turbo decoder is presented. The
performance of this decoder is illustrated and the tradeoff
between speed and efficiency is discussed. It is shown that some
decoders can run faster by some order of magnitude while
maintaining almost the same processing load.

The memory access poses as bottleneck in practical
implementation of such decoder. This problem is addressed by
introduction of a new structure for the interleaver. This structure
not only makes the implementation of the high-speed decoder
practically feasible, but also lowers the latency of the decoder
without extra hardware. It is shown that such an interleaver can
be designed to have good BER performance as well. We also
present a fast algorithm to design such an interleaver, which can
be used to design S-random interleavers as well. It has been
shown that the new interleaver structure can perform as well as
other good interleavers.

Graphical interpretation of the proposed code structure is
provided, which leads to the introduction of a new class of
Turbo-like codes that have high-speed decoding capability. A
general architecture for high-speed decoder of the codes in this
class is presented. Regularity and simplicity of the interleaver
makes it the architecture of choice for VLSI implementation of
very high-speed decoders.

Keywords- Turbo decoder; parallelization; high speed Turbo
decoder; Interleaver design;

Recently, some new classes of channel encoders have been
introduced that achieve near Shannon-capacity performance.
Turbo codes [4] and low-density parity-check (LDPC) Codes
are the most important examples. The basic property of these
codes is the capability of iterative decoding. The iterative
algorithms can be viewed as a probability or '%belief''
propagation algorithm, which is based on message passing [I].

This work is partially supported by an UC CORE sponsored by ST
Microelectronics. This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology under contract with the NASA.

Although iterative decoding has a parallel nature for LDPC
codes, for turbo codes it is very attractive in a serial way as
they use BCJR algorithm, which is a recursive algorithm.
Although the message-passing algorithm can be parallelized in
theory, it is quite inefficient and impractical for
implementation [2]. In [2] a concurrent turbo decoder is
studied, which can run by some orders of magnitude faster than
its serial counterpart. However, the number of components
used for processing is so large that makes it quite impractical.
Moreover, the processing load has been increased dramatically,
which translates to low efficiency. Another approach that is
proposed in the literature is using overlapping windows [3].
However, for a very high-speed decoder the extra processing
load for overlapping bits causes inefficiency and irregularity.

In this paper we first propose a method that make parallel
turbo decoding feasible, while efficiency of the decoder is
maintained. Then, we extend the idea to a broader range of
Turbo-like codes that create a new class of codes. All the codes
in this class are not only regular and parallelizable, but also
have practical high-speed decoders. A general architecture for
high speed decoding is presented for these codes.

In section I1 we describe the decoding algorithm for turbo
decoders. In section I11 the proposed architecture for the high-
speed decoder is described and the tradeoff between the speed
gain and the efficiency is discussed. In section IV we present a
new structure for the interleaver that makes the implementation
of the proposed decoder practically feasible. The performance
of the proposed decoder is discussed in section V and
simulation results are illustrated. In section VI a new class of
turbo-like codes are introduced that have capability of high-
speed decoding.

Turbo code was introduced in [4]. Berrou, et al, presented
the Parallel Concatenated Convolutional Code, (PCCC) and the
iterative decoding algorithm. Later Serial Concatenated
Convolutional Codes (SCCC) was presented in [5]. PCCC has
been remained the most popular type of turbo code, which has

been adopted in UMTS standards as channel coding scheme. In
the following we briefly describe the PCCC encoder and its
iterative decoder.

A PCCC is constructed from two or more parallel
convolutional encoders that are working on the input sequence
and its permuted versions in parallel. Each convolutional code
is called a constituent code. Without any loss of generality, the
PCCC with two constituent codes is studied in the sequel. The
generalization of the proposed method described for a simple
PCCC will be given later for a wide range of Turbo-like codes.
Fig. 1 depicts the structure of a PCCC with two constituent
codes. The block denoted by I is the interleaver, which
permutes the input sequence with a predefined random pattern.

Figure 1 . The structure of a PCCC encoder

The iterative decoding algorithm is based on Maximum-A-
Posteriori (MAP) decision of the input sequence. However,
since it is difficult to fmd the MAP solution by considering all
the observations at the same time, the MAP decoding is
performed on the observations of each constituent code
separately. Since two codes have been produced from one
input sequence, the A-Posteriori-Probability (APP) of data bits
coming from the first decoder can be used by the second
decoder and vice versa. The APP information passed between
the constituent codes is called extrinsic information. Therefore
the decoding process is carried out iteratively. In [5] a general
unit, called SISO, is introduced that generates the APPs for a
convolutional code in the most general case.

Since the second constituent code is using the permuted
version of the input sequence, therefore, extrinsic information
also should be permuted before being used by the second
decoder. Likewise, the extrinsic information of the second
decoder is to be permuted in reverse order for the next iteration
of the first decoder. Fig. 2 shows the iterative decoding bock
diagram. As we see two SISOs are used to process the
constituent codes.

Figure 2. The iterative decoding block diagram

An efficient algorithm for APP computation of a
convolutional code is known as BCJR algorithm [6]. In this
algorithm A-Posteriori-Probabilities for a time-invariant trellis
encoder can be computed with a complexity that depends

linearly on the number of states and also on the size of input
sequence. In fact, SISO is a block that implements the BCJR
algorithm. Here we briefly describe the structure of this
algorithm. The main three steps of this algorithm are as follow:

F-b

Forward recursion: In this step we compute the likelihood
of all the states in the trellis given the past observations.
Starting from a known state; the likelihood of that state is 1 and
others are zero; we will go ahead along the trellis and compute
the likelihood of all the states in one trellis section from the
likelihood of the states in the previous trellis section. The
computational complexity increases with the number of states.
This iterative scheme is continued until likelihoods of all the
states, which are called alpha variables, are computed in the
forward direction.

.
I-'

Backward recursion: This step is quite similar to the
forward recursion. Starting from a known state at the end of the
block, we compute the likelihood of previous states in one
trellis section. Therefore we compute the likelihood of all the
states in the trellis given the hture observations, which are
called beta variables. This iterative processing is continued
until the beginning of the trellis.

- SlSOl

Output computation: Once the forward and backward
likelihoods of the states are computed, the extrinsic
information can be computed from them. The extrinsic
information can be viewed as the likelihood of each bit given
the observations.

The block diagram of a SISO for a convolutional code of
length N is sketched in Figure 3. The inputs to the SISO block
are the observations (rl or r2)% initial values for alpha and beta
variables, (ao and bN) and the extrinsics coming from other
SISO. The outputs are the alpha and beta variables at the end of
forward and backward recursions, which are not used any
more, and the new extrinsics that will pass to the other SISO.

+

Figure 3. Block diagram of the SISO

In the traditional realization of the SISO, the timing scheduling
for the three mentioned steps is as follows. The backward
recursion is done completely for the entire block and all beta
variables are stored in a memory. Then, the forward recursion
starts from the first trellis section and computes the alpha
variables one by one. Since at this time both alpha and beta
variables are available for the first trellis section, the extrinsic
for the first bit is computed at this time. Therefore the extrinsic
computation is done along with the forward recursion. The
sequence of variables in time is as follows:

I

Backward: y ~ . l yN.2 . . . yl yo
b~ bNFl ... b2 bl bO

Forward: Yo YI . . . YN-z YN-I
a0 a1 . . . a ~ . ~ ~ N . I aN

output: xo x] ... X N - ~ X N - I

-+ SlS02 -

Where alpha and beta variables are denoted by a and b, and
inwming and outgoing extrinsics are denoted by y and x. We
could exchange the order in which forward and backward
recursion is done. However, this scheduling outputs the
extrinsics in reverse order. It should be emphasized that since
the BCJR algorithm is a recursive one, the processing is done
serially.

In this section we present a novel method for iteratively
dewding the turbo codes. Although this method is applicable
for every turbo wde, we will explain it in the case of a block
PCCC code.

The algorithm is as following. First of all, the received data
for each constituent wdes are divided into several contiguous
non-overlapping sub-blocks; so called windows. Then, each
window is decoded separately in parallel using the BCJR
algorithm. In other words, each window processor is a decoder
for a block of the information bits. However, the initial values
for alpha and beta variables come from previous iteration of
adjacent windows. Since all the windows are being processed
at the same time, in the next iteration the initial values are
ready to load for all of them. Therefore, there is no extra
processing needed for the initialization of state probabilities at
each iteration. The size of windows is a very important
parameter that will be discussed later. Fig. 3 shows the
structure of the decoder.

I Interleaver I

Figure 4. Parallel turbo decoder structure

The optimum way to process a window is the serial
processing using forward and backward recursions; i.e. BCJR
algorithm. Therefore each window processor is a SISO.

The proposed structure stems from the message-passing
algorithm itself. An example of the graph of the PCCC is
depicted in Figure 5. The graph is partitioned into several (M)
sub-graphs, which correspond to different windows. Each sub-
graph still represents a convolutional code, but their initial and
end states are determined by adjacent windows.

L--------------------l L------;-----;-----:_I

Figure 5. Partitioned graph of a simple PCCC

There are two types of messages that are communicated
between sub-graphs. First, the messages associated with the
information bits, i.e. the extrinsic information, which are
communicated between two constituent codes in the traditional
approach. Second, the messages that are related to the states in
window boundaries, we call them state messages. In fact, we
have introduced new messages that are passed between sub-
graphs at each iteration. These messages are the same as alpha
and beta variables that are computed in forward and backward
recursion of the BCJR algorithm. In the first iteration there is
no prior knowledge available about the state probabilities.
Therefore the messages are set to equal probability for all the
states. In each iteration, these messages are updated and passed
across the border of adjacent partitions.

Partitioning of the graph of code helps us to parallelize the
decoding of one constituent code. The processing for each
partition is usually done serially. This makes the algorithm
more efficient. Moreover, the hardware complexity is lowered.
In fact, we have used a serial-parallel scheduling for the
message-passing algorithm. In other words, partitioning
provides a method for serial-parallel method for iterative
decoding, which achieves both speed gain and low complexity.

Table I shows the parameters of a decoder. For window
size at two extremes, the approach is reduces to known
methods. If window size is B, the number of windows is 1, it
turns out to the sequential approach. If the window size is 1,
the architecture reduces to what was proposed in [2]. It should
be noted that the memory requirement for all cases is the same.

TABLE I. THE DECODER PARAMETERS

Processing time is the time needed to decode one block.
Since all windows are processed at the same time, each SISO is
done after T,. We assume that all computations associated with
one trellis section is done in one clock cycle (Tclk). We have I

Parameter

N
M

B = M x N

I

Tw= 2N x T..

T = 21x Tw

P = k 2 I B

Definition

Window size
Number of windows (SISOs)

Block size

Number of iterations

Window Processing Time

Processing Time (Latency)

Processing Load

iterations and each iteration has two constituent codes, so it
takes 21 x Tw to complete the decoding. It is worth mentioning
that the processing time determines the latency as well.
Therefore any speed gain is equivalent to lower latency.

Processing load is the amount of computations that we
need. The processing load for each SISO is proportional to the
number of the state variables. Hence, it is kB, where k is the
constant and depends on the complexity of the convolutional
code. It should be noted that processing load in both serial and
parallel SISO are the same. Therefore the total processing load
is 21 x kB.

The timing diagram can be simplified by using vector
notation, which is shown as following:

Backward: YN-I Y N - ~ . . . y1 yo
b~ bN.1 . . . b2 bl bo

Forward: Yo Y I ... YN-~YN-I
8081 ... aN-2aN-laN

Output: x0 X I . . . XN-2 XN.1

The variables that computed at the same time are simply
replaced with a vector. Each vector has M elements, which
belong to different window processors (SISOs). For example,

T we have a. = [a0 a~ a 2 ~ . . . aMN-N] and bo = [bo bN bZN .. . bm-
N] T. This notation is the generalization of the serial decoder. It
also will help to appreciate the new interleaver structure for
the parallel decoder discussed later.

IV. SPEED GAIN VS. EFFICIENCY

A. Definitions:
Two characteristic factors should be studied as performance

figures. One is the speed gain and the other is the efficiency. In
ideal parallelization the efficiency is always 1. It means that
there is no extra processing load needed for parallel processing.

They are defmed as following:

Speed gain = TdT

Efficiency = PdP

Where To and Po are the processing time and processing
load for the serial approach, i.e. W=B case. The factors can be
further simplified to:

Speed gain = M x I&

This is very interesting result. The speed gain and the
efficiency are proportional to the ratio between number of
iterations needed for serial case and parallel case. If the number
of iterations required for the parallel case is the same as the
serial case, we enjoy a speed gain of M without degrading the
efficiency, which is ideal parallelization. Therefore we should
look at the number of iterations required for a certain
performance to further quantify the characteristic factors. In
next section we will investigate these factors with some
simulations.

B. Simulations results
For simulations a PCCC with block size of 4800 is chosen.

The first constituent code is a rate one-half systematic code and
the second code is a rate one non-systematic recursive code.
The feed forward and feedback polynomials are the same for
both codes and are I+D+D) and ~ + D ~ + D) respectively. Thus
coding rate is 113. The simulated channel is an AWGN
channel. The bit error rate performance of the proposed high-
speed decoder has been simulated for window sizes of
N=256,128,64,48,32,16,8,4,2, and 1.

The first observation was that this structure does not
sacrifice performance for speed. We can always increase the
maximum number of iterations to get similar performance as of
the serial decoder. The maximum number of iterations for each
case is chosen such that the BER performance of the decoder
equals that of the serial decoder after 10 iterations &=lo).
Figure 6 . shows the BER performance of the decoder with
different window sizes. The curves are almost
indistinguishable.

However, in practice, the iterations are stopped based on a
criterion that shows the decoded data is reliable or correct. We
have simulated such a stopping criterion in order to obtain the
average number of iterations needed. The stopping rule that we
use is the equality between the results of two consecutive
iterations. The average number of iterations is used for the
efficiency computation. The average number of iterations for
low signal to noise ratio is the maximum number of iterations
for each window size.

Figure 6. Performances of parallel decoder

Efficiency and speed gain of the parallel decoder with
different window sizes is shown in Figure 7. It clearly shows
that we have to pay some penalty in order to achieve the speed
gain. Also we observe that the efficiency of parallel decoder
decreases gracefully for window sizes greater than 32. The
efficiency is degraded dramatically for very small windows,
which prohibits us to get speed gain as well. However, the
speed gain is a decreasing function.

Figure 8. Efticiency vs. signal to noise ratio.

Figure 7. Efficiency and speed gain

As a summary, in Table I1 the maximum number of
iterations, the average number of iterations, and the
characteristic factors are tabulated for different window sizes at
EdNo = 0.7 (BER = le-8).

TABLE 11. CHARACTERISTIC FACTORS FOR THE PARALLEL DECODER
@SNR= 0.7 dB (BER=IOE-8)

Efficiency curves with respect to SNR are illustrated in
Figure 8. The interesting observation in the efficiency curves is
flatness of the curves. In other words, the efficiency of the
parallel decoder is almost constant in all SNR This
observation translates to almost constant speed gain over the
whole SNR range.

In traditional decoder, the extrinsics are usually stored in a
memory whose locations is accessed one at a time. The order
in which the extrinsic memory is accessed is different for two
constituent codes because of the interleaver. It is accessed in
sequential order for the fust constituent code and in interleaved
order for the second constituent codes. In practice memory
addressing is used to access the memory in desired order.

Although the message-passing algorithm allows us to
parallelize the decoding process, accessing so many extrinsics
at the same time poses a practical problem. Since M SISOs are
running at the same time, M extrinsics are being used
simultaneously. Having a memory with M read and write ports
is practically infeasible, especially for large M. The solution is
to have M sub-memories each one is accessed only by one
SISO. This should be true not only for extrinsics in sequential
orders but also in interleaved orders. Therefore, it imposes a
constraint on the interleaver. In this section we propose an
interleaver structure that not only makes this possible, but also
lowers the latency of the overall decoder.

To explain the interleaver structure we start with the
reverse interleaver in a serial turbo decoder. It is observed that
using a reverse interleaver the next iteration can start
processing as soon as the first extrinsic is ready. In this case
every new computed extrinsic is used right away. This
property is only true for the reverse interleaver. The reason for
this property is that the sequence of extrinsics computed in the
current iterations matches the sequence needed in the
backward recursion in the next iteration. The following
sequences show the observation and extrinsic sequences used
for two constituent codes in one iteration.

YN-I YN-2 . . . YI Yo
b~ bN-I ... b2b1 bo

YO YI ... YN-2 YN-I
a,, al . . . a~.2 a ~ . ~ aN
xo xl . . . XN-2 XN-1 extrinsic outputs

XI . . . XN-2 XN.I extrinsic inputs
bNb~-l ... b2 bl bO

XN-1 X N . ~ ... XI Xo

a,, al . . . a ~ . ~ a ~ . ~ a ~
YN-I YN-2 . . . YI Yo

The indices used for alpha and beta variables denote the
trellis section number. For extrinsics they denote the bit
number in the block. The alpha and beta variables in two
iterations are totally independent, although for simplicity the
same notation is used for them.

As it is observed from the sequences in Fig. 6, the output
sequence of the second decoder is compatible with the input
sequence of the first decoder, which means that we can repeat
this pipelining process for succeeding iterations as well.

This phenomenon results in a very important advantage:
the latency of the decoder decreases by almost a factor of two,
which translates to speed gain as well. We have

Latency = (2I+l)xTw/2

This advantage comes at the expense of running both the
forward and backward recursion circuits all the time. There is
no extra hardware needed, though.

Despite this advantage, this interleaver is never used for
turbo codes. The reason is its poor BER performance. In the
sequel we use the reverse interleaver in the context of parallel
turbo decoder. By this we get around this problem by
incorporating one more permutation while we still exploit the
advantages.

For the parallel decoder; the timing diagram for two
consecutive iterations with the proposed interleaver is shown
in the following.

YN-I YN-2 . . . yl YO
bN-l ... b2 bl bO

YO Y1 . . . YN-2 YN-I
a. a1 . . . a ~ . 2 aN.1 a~
xo X I . . . XN-2 XN-I extrinsic outputs
6 6 6 6
no n, ... n ~ . 2 X N - ~ interleavers
6 6 6 6
xo xl . . . XN-2 XN., extrinsic inputs
bN bN-, ... b2 bl bO

XN-1 XN-2 . . . XI xg

a. a1 ... a ~ . 2 a ~ . l a ~

YN-I YN-2 ... Y1 YO

The idea is to use the same vector with permuted elements.
So the xo in the next iteration is permuted, &(xo), and yo will

be replaced by TG,-~(xo). If we did not have the &, n,, ..., &.,
interleavers, there would be nothing more than M parallel
decoders each one working on a separate block. However, the
presence of the interleavers creates a randomness that will
improve the performance of the code while the architecture of
the code is almost intact, i.e, the advantages of the reverse
interleaver are still in place.

The permutations are done differently for each vector.
Therefore the interleaver block is time-variant, but memory-
less. Because the number of parallel blocks is usually small,
the interleaver implementation is feasible. The structure of the
interleaver can be best understood by organizing the bits in a
matrix with each row having the bits processed in a SISO.
Each column of this matrix is a vector that is computed at a
time. We have a two-ster, interleaver: a reverse row interleaver
and a random column interleaver. If the matrix elements are
denoted by Pij, where i=O,l, ..., M-1 and j=0,1, ..., N-1, then the
equivalent interleaver sequence is { Q, }= { N*Pij + N-j). As
an example a turbo code with block length of 20 is
decomposed into M=5 sub-blocks of N=4 bits. Therefore,
there are 5 SISOs working in parallel; each one works on a
block of 4 bits. Table I11 shows an example of the interleaver

in matrix format. The equivalent interleaver is (1 1, 2, 5, 4, 15,
18, 9, 12, 19, 14, 1, 16, 3,6, 13, 8, 7, 10, 17,O).

TABLE 111. AN EXAMPLE OF THE INTERLEAVER

In this section we will explain how to design such an
interleaver. The algorithm has two main steps: constructing a
random interleaver and updating based on a certain constraint.
Fig. 8 shows the flowchart of this algorithm.

f Start 3

with N random
interleaver

Fig. 8: The flowchart of the algorithm.

Using the matrix format for the interleaver, we initialize the
interleaver design by taking a random interleaver for each
column. In the next step we will update the interleaver by
applying a certain constraint. To update the interleaver we use
column-wise bit swapping, which ensures that the structure of
the interleaver is preserved.

Since the constraints for interleaved designs are usually
applicable for one-dimensional interleaver, to update the
interleaver it is best to compute the equivalent interleaver,
which can be done on the fly. The constraint that we have
used is the spread of the interleaver. In other words, we want
to design an S-random interleaver with the proposed structure.
An ordinary S-random can be viewed as a special case for this
structure, i.e. when we have only one c o l u k . Therefore, this
algorithm not only presents an algorithm with the proposed
structure, but also gives a fast algorithm for designing S-
random interleavers.

Starting from the first row, i.e. the first SISO bits, the
constraint for each bit is checked given the previously
designed bits. If the constraint is met, we go to the next bit.
Otherwise we check the remaining elements in the column in
place of this bit. If one of them satisfies the constraint, we
exchange the indices in the column and go to the next bit. If
not, we try exchanging this bit with the previously designed
bits in the column. In this situation, when we exchange two
bits the constraint for both bits should be satisfied. If none of
the previously designed bits can be exchanged with this bit,
then the algorithm fails. There are two options available in
case the algorithm fails: one is to make the constraint milder
and the other one is to redo everything with a new random
matrix.

We have observed that this algorithm is very fast for S-
random interleaver design when the spread is less than
sqrt(Bl2). The maximum spread that we can achieve for the
structured interleaver is slightly smaller than that of the
ordinary one. Therefore, one should expect some degradation
in performance.

A. SIMULA TION RESULTS

For simulations two PCCCs with block sizes of 1024 and
4096 are chosen. The first constituent code is a rate one-half
systematic code and the second code is a rate one non-
systematic recursive code. The feed forward and feedback
polynomials are the same for both codes and are I+D+D' and
I+D'+D~ respectively. Thus coding rate is 113. The simulated
channel is an AWGN channel.

Two interleavers with block length of 1024 (32x32) and
4096 (128x32) have been designed with the proposed
algorithm. The bit error rate performance of the decbdeis has
been simulated and compared with that of the decoder with S-
random interleaver. The maximum number of iterations for
each case is 10.

Fig. 9 illustrates the performance comparison. The curves
corresponding to the performance of the decoder with S-
random interleaver are named with S suffix and the proposed
two-dimensional S-random interleaver with S2 suffix. As we

see the S-random interleaver has a slightly better error floor.
For the decoders with size 4096 the difference between the
error floors is more noticeable. However, the codes have equal
threshold in both cases. The error floor can be reduced with a
more powerful constraint in the interleaver design algorithm.

Figure 9. Performance comparison for B=1024

VI. GRAPHICAL VIEW

In this section we look at this problem from a graphical
point of view. The parallel turbo decoder comprises M
identical sub-graphs that are running in parallel. We put the
partitions in parallel planes and then look at the projected
graph. The projected graph for turbo code for the example of
Table I11 is shown in Figure 10.

I I I I

I lnterleaver

c 2 6 6 6 bi
Figure 10. Projected graph

The projected graph can be viewed as the vectorized
version of the actual graph. In other words, there is a message
vector associated with every edge in the projected graph. There
are three types of edges in the projected graph. First, the edges
that are inside the partitions, which are shown in solid lines.
The associated messages are internal messages that are not
communicated with other partitions. In PCCC case, these are
alpha and beta variables. Second, the edges that connect
adjacent partitions, which are shown in black dashed lines. The
associated messages are communicated between adjacent

partitions across their border; we call them border messages.
Initial values for alpha and beta variable at each iteration are
border messages in the parallel PCCC. Third, the edges that
connect two constituent codes. These edges are interleaved
before reach the other constituent code. The extrinsics are
associated with these edges. The structure of memories for
extrinsics is such that only one extrinsic vector is accessible at
a time. In order to solve the memory access problem, the
interleaver preserves the extrinsic vectors in its entirety, but the
permutation is allowed within a vector. The permutation within
a vector is the permutation among the window processors or
different planes in the overall graph. In other words, the
interleaver consists of several independent permutations within
the extrinsic vectors.

The interesting property about the projected graph is that
the proposed interleaver is viewed as some disjoint edges. The
projected graph for turbo code for the example of Table 111 is
shown in Figure 11. The red dashed edges indicate that the
permutation is allowed within a vector. Therefore, projected
graph not only shows the structure of the code, but also its
interleaver.

L -1

Figure 1 1 . Projected graph with the proposed interleaver

The way edges are connected between two constituent
codes in the projected graph is another flexibility in the
interleaver design. It is very instructive to note that the reverse
interleaver, used for decreasing the latency, is clearly shown in
the figure- connecting the edges of two component graphs in
reverse order.

VII. DESIGN BASED ON PROJECTED GRAPH

In this section design methodology for turbo-like codes
based on the projected graph is presented. This approach is
very appealing because the resulting code is definitely is
parallelizable and the performance of the code can be analyzed
very efficiently by its component graphs using density
evolution technique. The following section explains how to
design LDPC codes with parallel decoding capabilities.

There are two ways that could be pursued in order to design
codes based on projected graphs. First approach is the one that
was used so far to parallelize the decoder. This is based on
partitioning an existing code graph into some sub-graphs. This

method works on any regular or semi-regular graph. The
projected graph includes one partition of each component code,
which is called component graph. The component graphs are
connected with edges that represent independent interleavers.
To show the broadness of this approach we have illustrated the
projected graphs for a PCCC with three constituent codes, a
simple SCCC, repeat-accumulate @A) and irregular-repeat-
accumulate (IRA) codes in Figure 12.

Figure 12. Projected graphs (a) PCCC with 3 constituent codes @) a simple
SCCC (d) RA code (q=3) (d) IRA code (q=2,3)

The second approach is to design the code by designing its
projected graph. In this method we should design some
component graphs and the connections between them in order
to have good performance. In other words, the partitions are
designed first and then put together to create constituent codes.

The most important example of this approach is LDPC
codes with projected graphs. There are two component graphs:
one contains only single parity check codes (variable degrees)
and the other has only repetition codes (variable degrees). One
example of such a code is shown in Figure 13.

Figure 13. A LDPC with projected graph

There are some noticeable facts about this projected graph.
All variable nodes are in one component graph, which means
that all the observations is stored and processed in one kind of
window processor. Variable and check node can have different
degrees. Therefore this structure is capable of implementing
regular and irregular LDPC codes. The degree distribution of
variable and check nodes is known from the projected graph.
There are no local messages and no border messages are
passed between adjacent sub-graphs. Therefore, the projected
graph can be represented graphically as a simple tanner graph.
The graphical representation for above example is shown in
Figure 14. The number of interleavers needed for this code is
equal to the number of edges of the projected graph.

Figure 14. Simple graphical representation of a LDPC projected graph

The only disadvantage of this method for code design is
that it does not provide an efficient encoder. Sometimes simple
encoding is not possible for codes designed this way.

VIII. GENERAL HARDWARE ARCHITECTURE

In this section we present general hardware architecture for
implementation of parallel turbo-like decoders. Without any
loss of generality we focus on turbo-like codes with two
constituent codes. This can be easily extended to codes with
several constituent codes, see appendix A. The general

hardware architecture is shown in Figure 15. EXT, denotes the
external memory for nth window processor.

1 processor w i y 1 processor Wi: . . mq w ~ ; 1 1 sctm/ing 1
processor Controller

Figure 15. Parallel decoder hardware architecture

Since the processors are identical and are running in
parallel the scheduling is the same for all of them. Therefore,
there is only one scheduling controller needed for each
constituent codes. The scheduling controller determines which
message vector is accessed and what permutation is used. The
permuter is a memory-less block that permutes the message
vector on the fly. Since the message vectors are permuted
differently, the permuter should be programmable. If M, the
number of window processors, is large, the permuter can be the
bottleneck of the hardware design.

The architecture of one window processor is depicted in
Figure 16.

I I Observation Mern I I
I I Internal Messages Mern 1 I

Figure 16. Window processor hardware architecture

AM and BM denote the registers which contains border
messages. The observation memory is loaded at the beginning
of the decoding and remains intact until end. This memory is
not necessary for all window processors.

-'
+-

,+

+-

I
-

& I &t
I

-
A

-

+

t-

Message
Passing

Core

+

+

-

-

IX. CONCLUSION

We have proposed an efficient architecture for parallel
processing of turbo decoding. Non-overlapping windows were
used that reduces the processing load. Interleavers are designed
to have collision free memory access. The tradeoff between
speed gain and efficiency was studied. Simulation results
showed that the more the speed gain is, the lower is the
efficiency. In other words, serial processing is more efficient
that processing. ~owev&, with window-size
this structure not only can achieve some orders of magnitude in
speed gain, but also maintains the efficiency in processing.

The memory access problem was addressed by designing a
special interleaver. Simulation results show that the
performance of code with the proposed interleaver structure is
as good as other interleavers.

The proposed algorithm was explained based on message
passing algorithm and the graphical interpretation of the code
structure was presented. This led to introduction of a new class
of turbo-like codes that can be decoded very fast, which are the
codes with projected graph. This classification provides an
alternative method to design turbo-like codes for high-speed
decoding.

At the end, a general architecture for decoding this class of
codes was also presented. The regularity and simplicity of the
proposed architecture make it the architecture of choice for
VLSI implementation of high-speed turbo-like codes.

ACKNOWLEDGMENT

The authors would like to thank Dr. F. Lorenzelli for his
helpful comments. (c)

Turbo-like codes consist of constituent codes connected
with random or psuedo-random interleavers. The iterative
decoding is performed by passing messages between these
constituent codes.

In most cases there are only two constituent codes.
However, it can be shown that we can almost always
rearrange the code such that a turbo-like code with only two
constituent codes is obtained.

The main idea is to align the interleavers in one line and
divide the constituent codes into two sets, which comprise the
new component codes. This is explained with some examples
in Figure 17.

Figure 17. (a) Parallel Concatenated codes (b) Serial Concatenated codes (c)
Hybrid concatenated codes.

[I] F.R. Kschischang and B.J. Frey, "Iterative decoding of compound codes
by probability propagation in graphical models," IEEE JSAC. pp.219-
230, Vol. 16, No2, Feb. 98.

[2] B.J. Frey, F.R. Kschischang, and P.G. Gulak, "Concurrent turbo-
decoding," Proc, of IEEE International Symp. on Info. Theory. p.431.
July 97.

[3] J. Hsu and C.H. Wang, "A parallel decoding scheme for turbo codes,"
ISCAS'98, vo1.4, June 98, pp. 445-448.

[4] C. Berrou, A. Glavieux, and P. Thitimasjshima, "Near Shannon limit
error correcting coding and decoding: Turbo codes (I)," in Proc. IEEE
Int. Conf. Comm., Geneva, Switzerland, May 1993, pp. 1064-1070.

[5] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Soft-input Soft-
output APP module for iterative decoding of concatenated codes," IEEE
Commu. Letters vol. I, pp.22-24, Jan. 97.

[6] L.R. Bahl, J. Cocke, F. Jelinek,, and J. Raviv, "Optimal decoding of
linear codes for minimizing symbol error rate," IEEE Trans. Inform.
Theory, vol. IT-20, pp.284-287, Mar. 1974.

